Hearing Tests for Seniors: What to Expect
Have you noticed yourself turning up the TV volume lately? Or maybe
July 18, 2013 – Ending a 30-year search by scientists, researchers at Boston Children’s Hospital have identified two proteins in the inner ear that are critical for hearing, which, when damaged by genetic mutations, cause a form of delayed, progressive hearing loss. Findings were published online July 18 by the journal Neuron.
The mutations, affecting genes known as TMC1 and TMC2, were reported in 2011 by the laboratory of Jeffrey Holt, PhD, in the Department of Otolaryngology at Boston Children’s. Until now, however, it wasn’t clear what the genes do. In the new study, Holt and colleagues at the National Institute on Deafness and Other Communication Disorders (NIDCD) show that the proteins encoded by the genes form channels that turn mechanical sound waves into electrical signals that talk to the brain. A tiny point mutation — a change in one base or “letter” in the genetic sequence — is enough to cause deafness.
Corresponding channels for each of the other senses were identified years ago, but the sensory transduction channel for both hearing and the sense of balance had remained a mystery, says Holt.
The study involved so-called Beethoven mice that carry mutations on TMC1 and become deaf by their second month of life. Each mutation has a human counterpart that causes a prominent form of genetic deafness, causing children to become completely deaf by the age of 10 to 15 years.
Studies of sensory hair cells from the cochleas of the mice, which sense sound vibrations and signal the brain, showed that the TMC1 and TMC2 proteins are necessary to get calcium into the cells. The researchers showed that when TMC1 was mutated, the calcium influx was reduced and the resulting electrical current was weaker in response to sound. “This is the smoking gun we’ve been looking for,” says Holt.
The study also provided evidence that:
Based on the initial genetic discovery in 2011, a gene therapy study is now underway in mice to see whether reintroducing TMC1 and/or TMC2 genes to the inner ear could restore hearing. The team is looking for electrical signals in the 8th cranial nerve — indicating that the brain is being signaled — and more importantly whether the animals respond to sound.
Story Source:
The above story is based on materials provided by Boston Children’s Hospital, via EurekAlert!, a service of AAAS.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
Have you noticed yourself turning up the TV volume lately? Or maybe
Hearing loss can sneak up on you when you least expect it. One moment,
Experiencing sudden hearing loss can be a shocking and life-altering